Publications by topic
MRI
- Klaassen, Haasjes, Hol, Lopes, Spruijt, Steeg-Henzen, Vu, Bakker, Rasch, Verbist and Beenakker. Geometrical accuracy of magnetic resonance imaging for ocular proton therapy planning. Physics and Imaging in Radiation Oncology (2024), doi: 10.1016/j.phro.2024.100598
- Hrbacek, Kacperek, Beenakker, Mortimer, Denker, Mazal, Shih, Dendale, Slopsema, Heufelder and Mishra. PTCOG Ocular Statement: Expert Summary of Current Practices and Future Developments in Ocular Proton Therapy. International Journal of Radiation Oncology*Biology*Physics (2024), doi: 10.1016/j.ijrobp.2024.06.017
- Klaassen, Jaarsma-Coes, Marinkovic, Luyten, Rasch, Ferreira and Beenakker. Quantitative Perfusion-Weighted Magnetic Resonance Imaging in Uveal Melanoma.. Investigative ophthalmology & visual science (2024), doi: 10.1167/iovs.65.11.17
- Jaarsma-Coes, Ferreira, Marinkovic, Vu, Vught, Haren, Rodrigues, Klaver, Verbist, Luyten, Rasch and Beenakker. Comparison of Magnetic Resonance Imaging–Based and Conventional Measurements for Proton Beam Therapy of Uveal Melanoma. Ophthalmology Retina (2023), doi: 10.1016/j.oret.2022.06.019
- Keene, Notting, Verschuuren, Voermans, Keizer, Beenakker, Tannemaat and Kan. Eye Muscle MRI in Myasthenia Gravis and Other Neuromuscular Disorders. Journal of Neuromuscular Diseases (2023), doi: 10.3233/jnd-230023
- Jaarsma-Coes, Klaassen, Verbist, Vu, Klaver, Rodrigues, Nabarro, Luyten, Rasch, Herk and Beenakker. Inter-Observer Variability in MR-Based Target Volume Delineation of Uveal Melanoma. Advances in Radiation Oncology (2023), doi: 10.1016/j.adro.2022.101149
- Jaarsma-Coes, Klaassen, Marinkovic, Luyten, Vu, Ferreira and Beenakker. Magnetic Resonance Imaging in the Clinical Care for Uveal Melanoma Patients—A Systematic Review from an Ophthalmic Perspective. Cancers (2023), doi: 10.3390/cancers15112995
- Tang, Ferreira, Marinkovic, Jaarsma-Coes, Klaassen, Vu, Creutzberg, Rodrigues, Horeweg, Klaver, Rasch, Luyten and Beenakker. MR-based follow-up after brachytherapy and proton beam therapy in uveal melanoma. Neuroradiology (2023), doi: 10.1007/s00234-023-03166-1
- Tang, Jaarsma‐Coes, Ferreira, Fonk, Marinkovic, Luyten and Beenakker. A Comparison of 3 T and 7 T MRI for the Clinical Evaluation of Uveal Melanoma. Journal of Magnetic Resonance Imaging (2022), doi: 10.1002/jmri.27939
- Klaassen, Jaarsma-Coes, Verbist, Vu, Marinkovic, Rasch, Luyten and Beenakker. Automatic Three-Dimensional Magnetic Resonance-based measurements of tumour prominence and basal diameter for treatment planning of uveal melanoma. Physics and Imaging in Radiation Oncology (2022), doi: 10.1016/j.phro.2022.11.001
- Keene, Kan, Meeren, Verbist, Tannemaat, Beenakker and Verschuuren. Clinical and imaging clues to the diagnosis and follow‐up of ptosis and ophthalmoparesis. Journal of Cachexia, Sarcopenia and Muscle (2022), doi: 10.1002/jcsm.13089
- Vught, Que, Luyten and Beenakker. Effect of anatomical differences and intraocular lens design on negative dysphotopsia. Journal of Cataract & Refractive Surgery (2022), doi: 10.1097/j.jcrs.0000000000001054
- Jaarsma-Coes, Ferreira, Houdt, Heide, Luyten and Beenakker. Eye-specific quantitative dynamic contrast-enhanced MRI analysis for patients with intraocular masses. Magnetic Resonance Materials in Physics, Biology and Medicine (2022), doi: 10.1007/s10334-021-00961-w
- Beenakker and Rasch. Letter to the Editor of Radiotherapy and Oncology regarding the paper titled “MRI and FUNDUS image fusion for improved ocular biometry in Ocular Proton Therapy” by Via et al.. Radiotherapy and Oncology (2022), doi: 10.1016/j.radonc.2022.08.018
- Islamaj, Vught, Jordaan-Kuip, Vermeer, Ferreira, Waard, Lemij and Beenakker. Magnetic resonance imaging reveals possible cause of diplopia after Baerveldt glaucoma implantation. PLoS ONE (2022), doi: 10.1371/journal.pone.0276527
- Ferreira, Jaarsma-Coes, Marinkovic, Verbist, Verdijk, Jager, Luyten and Beenakker. MR imaging characteristics of uveal melanoma with histopathological validation. Neuroradiology (2022), doi: 10.1007/s00234-021-02825-5
- Beenakker, Brouwer, Chau, Coupland, Fiorentzis, Heimann, Heufelder, Joussen, Kiilgaard, Kivelä, Piperno-Neumann, Rantala, Romanowska-Dixon, Shields, Willerding, Wheeler-Schilling, Scholl, Jager and Damato. Outcome Measures of New Technologies in Uveal Melanoma: Review from the European Vision Institute Special Interest Focus Group Meeting. Ophthalmic Research (2022), doi: 10.1159/000524372
- Hassan, Fleury, Shamonin, Fonk, Marinkovic, Jaarsma-Coes, Luyten, Webb, Beenakker and Stoel. An Automatic Framework to Create Patient-specific Eye Models From 3D Magnetic Resonance Images for Treatment Selection in Patients With Uveal Melanoma. Advances in Radiation Oncology (2021), doi: 10.1016/j.adro.2021.100697
- Vught, Dekker, Stoel, Luyten and Beenakker. Evaluation of intraocular lens position and retinal shape in negative dysphotopsia using high-resolution magnetic resonance imaging. Journal of Cataract & Refractive Surgery (2021), doi: 10.1097/j.jcrs.0000000000000576
- Vught, Shamonin, Luyten, Stoel and Beenakker. MRI-based 3D retinal shape determination. BMJ Open Ophthalmology (2021), doi: 10.1136/bmjophth-2021-000855
- Niendorf, Beenakker, Langner, Erb-Eigner, Cuadra, Beller, Millward, Niendorf and Stachs. Ophthalmic Magnetic Resonance Imaging: Where Are We (Heading To)?. Current Eye Research (2021), doi: 10.1080/02713683.2021.1874021
- Keene, Vught, Velde, Ciggaar, Notting, Genders, Verschuuren, Tannemaat, Kan and Beenakker. The feasibility of quantitative MRI of extra‐ocular muscles in myasthenia gravis and Graves' orbitopathy. NMR in Biomedicine (2021), doi: 10.1002/nbm.4407
- Fleury, Trnková, Erdal, Hassan, Stoel, Jaarma‐Coes, Luyten, Herault, Webb, Beenakker, Pignol and Hoogeman. Three‐dimensional MRI‐based treatment planning approach for non‐invasive ocular proton therapy. Medical Physics (2021), doi: 10.1002/mp.14665
- Vught, Luyten and Beenakker. Distinct differences in anterior chamber configuration and peripheral aberrations in negative dysphotopsia. Journal of Cataract and Refractive Surgery (2020), doi: 10.1097/j.jcrs.0000000000000206
- Jaarsma-Coes, Marinkovic, Astreinidou, Schuurmans, Peters, Luyten, Rasch and Beenakker. Measuring eye deformation between planning and proton beam therapy position using magnetic resonance imaging. Physics and Imaging in Radiation Oncology (2020), doi: 10.1016/j.phro.2020.09.010
- Ferreira, Pinheiro, Saraiva, Jaarsma-Coes, Duinen, Genders, Marinkovic and Beenakker. MR and CT Imaging of the Normal Eyelid and its Application in Eyelid Tumors. Cancers (2020), doi: 10.3390/cancers12030658
- Keene, Beenakker, Hooijmans, Naarding, Niks, Otto, Pol, Tannemaat, Kan and Froeling. T2 relaxation‐time mapping in healthy and diseased skeletal muscle using extended phase graph algorithms. Magnetic Resonance in Medicine (2020), doi: 10.1002/mrm.28290
- Fonk, Ferreira, Webb, Luyten and Beenakker. The Economic Value of MR-Imaging for Uveal Melanoma. Clinical Ophthalmology (Auckland, N.Z.) (2020), doi: 10.2147/opth.s238405
- Koolstra, Beenakker, Koken, Webb and Börnert. Cartesian MR fingerprinting in the eye at 7T using compressed sensing and matrix completion‐based reconstructions. Magnetic Resonance in Medicine (2019), doi: 10.1002/mrm.27594
- Jaarsma-Coes, Ferreira, Haren, Marinkovic and Beenakker. MRI enables accurate diagnosis and follow-up in uveal melanoma patients after vitrectomy. Melanoma Research (2019), doi: 10.1097/cmr.0000000000000568
- Ferreira, Fonk, Jaarsma-Coes, Haren, Marinkovic and Beenakker. MRI of Uveal Melanoma. Cancers (2019), doi: 10.3390/cancers11030377
- Jaarsma-Coes, Ferreira, Luyten and Beenakker. Reaction on “Ocular ultrasound versus MRI in the detection of extrascleral extension in a patient with choroidal melanoma”. BMC Ophthalmology (2019), doi: 10.1186/s12886-019-1206-y
- Beenakker, Wezel, Groen, Webb and Börnert. Silent volumetric multi-contrast 7 Tesla MRI of ocular tumors using Zero Echo Time imaging. PLoS ONE (2019), doi: 10.1371/journal.pone.0222573
- Jong, Graaf, Pouwels, Beenakker, Jansen, Geurts, Moll, Castelijns, Valk and Weerd. 9.4T and 17.6T MRI of Retinoblastoma: Ex Vivo evaluation of microstructural anatomy and disease extent compared with histopathology. Journal of Magnetic Resonance Imaging (2018), doi: 10.1002/jmri.25913
- Ferreira, Saraiva, Genders, Buchem, Luyten and Beenakker. CT and MR imaging of orbital inflammation. Neuroradiology (2018), doi: 10.1007/s00234-018-2103-4
- Wezel, Garpebring, Webb, Osch and Beenakker. Automated eye blink detection and correction method for clinical MR eye imaging. Magnetic Resonance in Medicine (2017), doi: 10.1002/mrm.26355
- Isakova, Pralits, Romano, Beenakker, Shamonin and Repetto. Equilibrium shape of the aqueous humor-vitreous substitute interface in vitrectomized eyes. Journal for Modeling in Ophthalmology (2017), doi: 10.35119/maio.v1i3.36
- Beenakker, Ferreira, Soemarwoto, Genders, Teeuwisse, Webb and Luyten. Clinical evaluation of ultra-high-field MRI for three-dimensional visualisation of tumour size in uveal melanoma patients, with direct relevance to treatment planning. Magnetic Resonance Materials in Physics, Biology and Medicine (2016), doi: 10.1007/s10334-016-0529-4
- Beenakker, Shamonin, Webb, Luyten and Stoel. Automated Retinal Topographic Maps Measured With Magnetic Resonance Imaging. Investigative Ophthalmology & Visual Science (2015), doi: 10.1167/iovs.14-15161
- Ruytenberg, Webb and Beenakker. A multi-purpose open-source triggering platform for magnetic resonance. Journal of Magnetic Resonance (2014), doi: 10.1016/j.jmr.2014.08.009
- Brand, Webb and Beenakker. Design and performance of a transformer‐coupled double resonant quadrature birdcage coil for localized proton and phosphorus spectroscopy in the human calf muscle at 7 T. Concepts in Magnetic Resonance Part A (2013), doi: 10.1002/cmr.a.21281
- Beenakker, Rijn, Luyten and Webb. High‐resolution MRI of uveal melanoma using a microcoil phased array at 7 T. NMR in Biomedicine (2013), doi: 10.1002/nbm.3041
Ocular Oncology
- Klaassen, Haasjes, Hol, Lopes, Spruijt, Steeg-Henzen, Vu, Bakker, Rasch, Verbist and Beenakker. Geometrical accuracy of magnetic resonance imaging for ocular proton therapy planning. Physics and Imaging in Radiation Oncology (2024), doi: 10.1016/j.phro.2024.100598
- Hrbacek, Kacperek, Beenakker, Mortimer, Denker, Mazal, Shih, Dendale, Slopsema, Heufelder and Mishra. PTCOG Ocular Statement: Expert Summary of Current Practices and Future Developments in Ocular Proton Therapy. International Journal of Radiation Oncology*Biology*Physics (2024), doi: 10.1016/j.ijrobp.2024.06.017
- Klaassen, Jaarsma-Coes, Marinkovic, Luyten, Rasch, Ferreira and Beenakker. Quantitative Perfusion-Weighted Magnetic Resonance Imaging in Uveal Melanoma.. Investigative ophthalmology & visual science (2024), doi: 10.1167/iovs.65.11.17
- Jaarsma-Coes, Ferreira, Marinkovic, Vu, Vught, Haren, Rodrigues, Klaver, Verbist, Luyten, Rasch and Beenakker. Comparison of Magnetic Resonance Imaging–Based and Conventional Measurements for Proton Beam Therapy of Uveal Melanoma. Ophthalmology Retina (2023), doi: 10.1016/j.oret.2022.06.019
- Jaarsma-Coes, Klaassen, Verbist, Vu, Klaver, Rodrigues, Nabarro, Luyten, Rasch, Herk and Beenakker. Inter-Observer Variability in MR-Based Target Volume Delineation of Uveal Melanoma. Advances in Radiation Oncology (2023), doi: 10.1016/j.adro.2022.101149
- Jaarsma-Coes, Klaassen, Marinkovic, Luyten, Vu, Ferreira and Beenakker. Magnetic Resonance Imaging in the Clinical Care for Uveal Melanoma Patients—A Systematic Review from an Ophthalmic Perspective. Cancers (2023), doi: 10.3390/cancers15112995
- Tang, Ferreira, Marinkovic, Jaarsma-Coes, Klaassen, Vu, Creutzberg, Rodrigues, Horeweg, Klaver, Rasch, Luyten and Beenakker. MR-based follow-up after brachytherapy and proton beam therapy in uveal melanoma. Neuroradiology (2023), doi: 10.1007/s00234-023-03166-1
- Tong, Bastiaannet, Speetjens, Blank, Luyten, Jager, Marinkovic, Vu, Rasch, Creutzberg, Beenakker, Hartgrink, Bosch, Kiliç, Naus, Yavuzyigitoglu, Rij, Burgmans and Kapiteijn. Time Trends in the Treatment and Survival of 5036 Uveal Melanoma Patients in The Netherlands over a 30-Year Period. Cancers (2023), doi: 10.3390/cancers15225419
- Tang, Jaarsma‐Coes, Ferreira, Fonk, Marinkovic, Luyten and Beenakker. A Comparison of 3 T and 7 T MRI for the Clinical Evaluation of Uveal Melanoma. Journal of Magnetic Resonance Imaging (2022), doi: 10.1002/jmri.27939
- Klaassen, Jaarsma-Coes, Verbist, Vu, Marinkovic, Rasch, Luyten and Beenakker. Automatic Three-Dimensional Magnetic Resonance-based measurements of tumour prominence and basal diameter for treatment planning of uveal melanoma. Physics and Imaging in Radiation Oncology (2022), doi: 10.1016/j.phro.2022.11.001
- Jaarsma-Coes, Ferreira, Houdt, Heide, Luyten and Beenakker. Eye-specific quantitative dynamic contrast-enhanced MRI analysis for patients with intraocular masses. Magnetic Resonance Materials in Physics, Biology and Medicine (2022), doi: 10.1007/s10334-021-00961-w
- Beenakker and Rasch. Letter to the Editor of Radiotherapy and Oncology regarding the paper titled “MRI and FUNDUS image fusion for improved ocular biometry in Ocular Proton Therapy” by Via et al.. Radiotherapy and Oncology (2022), doi: 10.1016/j.radonc.2022.08.018
- Ferreira, Jaarsma-Coes, Marinkovic, Verbist, Verdijk, Jager, Luyten and Beenakker. MR imaging characteristics of uveal melanoma with histopathological validation. Neuroradiology (2022), doi: 10.1007/s00234-021-02825-5
- Beenakker, Brouwer, Chau, Coupland, Fiorentzis, Heimann, Heufelder, Joussen, Kiilgaard, Kivelä, Piperno-Neumann, Rantala, Romanowska-Dixon, Shields, Willerding, Wheeler-Schilling, Scholl, Jager and Damato. Outcome Measures of New Technologies in Uveal Melanoma: Review from the European Vision Institute Special Interest Focus Group Meeting. Ophthalmic Research (2022), doi: 10.1159/000524372
- Hassan, Fleury, Shamonin, Fonk, Marinkovic, Jaarsma-Coes, Luyten, Webb, Beenakker and Stoel. An Automatic Framework to Create Patient-specific Eye Models From 3D Magnetic Resonance Images for Treatment Selection in Patients With Uveal Melanoma. Advances in Radiation Oncology (2021), doi: 10.1016/j.adro.2021.100697
- Niendorf, Beenakker, Langner, Erb-Eigner, Cuadra, Beller, Millward, Niendorf and Stachs. Ophthalmic Magnetic Resonance Imaging: Where Are We (Heading To)?. Current Eye Research (2021), doi: 10.1080/02713683.2021.1874021
- Fleury, Trnková, Erdal, Hassan, Stoel, Jaarma‐Coes, Luyten, Herault, Webb, Beenakker, Pignol and Hoogeman. Three‐dimensional MRI‐based treatment planning approach for non‐invasive ocular proton therapy. Medical Physics (2021), doi: 10.1002/mp.14665
- Jaarsma-Coes, Marinkovic, Astreinidou, Schuurmans, Peters, Luyten, Rasch and Beenakker. Measuring eye deformation between planning and proton beam therapy position using magnetic resonance imaging. Physics and Imaging in Radiation Oncology (2020), doi: 10.1016/j.phro.2020.09.010
- Ferreira, Pinheiro, Saraiva, Jaarsma-Coes, Duinen, Genders, Marinkovic and Beenakker. MR and CT Imaging of the Normal Eyelid and its Application in Eyelid Tumors. Cancers (2020), doi: 10.3390/cancers12030658
- Fonk, Ferreira, Webb, Luyten and Beenakker. The Economic Value of MR-Imaging for Uveal Melanoma. Clinical Ophthalmology (Auckland, N.Z.) (2020), doi: 10.2147/opth.s238405
- Koolstra, Beenakker, Koken, Webb and Börnert. Cartesian MR fingerprinting in the eye at 7T using compressed sensing and matrix completion‐based reconstructions. Magnetic Resonance in Medicine (2019), doi: 10.1002/mrm.27594
- Jaarsma-Coes, Ferreira, Haren, Marinkovic and Beenakker. MRI enables accurate diagnosis and follow-up in uveal melanoma patients after vitrectomy. Melanoma Research (2019), doi: 10.1097/cmr.0000000000000568
- Ferreira, Fonk, Jaarsma-Coes, Haren, Marinkovic and Beenakker. MRI of Uveal Melanoma. Cancers (2019), doi: 10.3390/cancers11030377
- Jaarsma-Coes, Ferreira, Luyten and Beenakker. Reaction on “Ocular ultrasound versus MRI in the detection of extrascleral extension in a patient with choroidal melanoma”. BMC Ophthalmology (2019), doi: 10.1186/s12886-019-1206-y
- Beenakker, Wezel, Groen, Webb and Börnert. Silent volumetric multi-contrast 7 Tesla MRI of ocular tumors using Zero Echo Time imaging. PLoS ONE (2019), doi: 10.1371/journal.pone.0222573
- Jong, Graaf, Pouwels, Beenakker, Jansen, Geurts, Moll, Castelijns, Valk and Weerd. 9.4T and 17.6T MRI of Retinoblastoma: Ex Vivo evaluation of microstructural anatomy and disease extent compared with histopathology. Journal of Magnetic Resonance Imaging (2018), doi: 10.1002/jmri.25913
- Wezel, Garpebring, Webb, Osch and Beenakker. Automated eye blink detection and correction method for clinical MR eye imaging. Magnetic Resonance in Medicine (2017), doi: 10.1002/mrm.26355
- Beenakker, Ferreira, Soemarwoto, Genders, Teeuwisse, Webb and Luyten. Clinical evaluation of ultra-high-field MRI for three-dimensional visualisation of tumour size in uveal melanoma patients, with direct relevance to treatment planning. Magnetic Resonance Materials in Physics, Biology and Medicine (2016), doi: 10.1007/s10334-016-0529-4
- Beenakker, Rijn, Luyten and Webb. High‐resolution MRI of uveal melanoma using a microcoil phased array at 7 T. NMR in Biomedicine (2013), doi: 10.1002/nbm.3041
Visual Optics
- Makhotkina, Nijkamp, Berendschot, Borne, Kruchten, Vught, Beenakker, Krijgh, Aslam, Pesudovs and Nuijts. Measuring quality of vision including negative dysphotopsia. Acta Ophthalmologica (2024), doi: 10.1111/aos.15762
- Vught, Haasjes and Beenakker. ZOSPy: optical ray tracing in Python through OpticStudio. Journal of Open Source Software (2024), doi: 10.21105/joss.05756
- Grzybowski and Beenakker. More on light dysphotopsia origin in pseudophakia. Graefe's Archive for Clinical and Experimental Ophthalmology (2023), doi: 10.1007/s00417-023-06029-w
- Vught, Luyten and Beenakker. Peripheral visual field shifts after intraocular lens implantation. Journal of Cataract & Refractive Surgery (2023), doi: 10.1097/j.jcrs.0000000000001299
- Vught, Que, Luyten and Beenakker. Effect of anatomical differences and intraocular lens design on negative dysphotopsia. Journal of Cataract & Refractive Surgery (2022), doi: 10.1097/j.jcrs.0000000000001054
- Rozendal, Vught, Luyten and Beenakker. The Value of Static Perimetry in the Diagnosis and Follow-up of Negative Dysphotopsia. Optometry and Vision Science (2022), doi: 10.1097/opx.0000000000001918
- Gaurisankar, Rijn, Cheng, Luyten and Beenakker. Two-year results after combined phacoemulsification and iris-fixated phakic intraocular lens removal. Graefe's Archive for Clinical and Experimental Ophthalmology (2022), doi: 10.1007/s00417-021-05442-3
- Gaurisankar, Rijn, Luyten and Beenakker. Differences between Scheimpflug and optical coherence tomography in determining safety distances in eyes with an iris-fixating phakic intraocular lens. Graefe's Archive for Clinical and Experimental Ophthalmology (2021), doi: 10.1007/s00417-020-04874-7
- Vught, Dekker, Stoel, Luyten and Beenakker. Evaluation of intraocular lens position and retinal shape in negative dysphotopsia using high-resolution magnetic resonance imaging. Journal of Cataract & Refractive Surgery (2021), doi: 10.1097/j.jcrs.0000000000000576
- Rijn, Gaurisankar, Saxena, Gibbes, Jongman, Haasnoot, Cheng, Beenakker and Luyten. Implantation of an iris-fixated phakic intraocular lens for the correction of hyperopia: 15-year follow-up. Journal of Cataract & Refractive Surgery (2021), doi: 10.1097/j.jcrs.0000000000000532
- Gaurisankar, Rijn, Haasnoot, Verhoeven, Klaver, Luyten and Beenakker. Long‐term longitudinal changes in axial length in the Caucasian myopic and hyperopic population with a phakic intraocular lens. Acta Ophthalmologica (2021), doi: 10.1111/aos.14647
- Vught, Shamonin, Luyten, Stoel and Beenakker. MRI-based 3D retinal shape determination. BMJ Open Ophthalmology (2021), doi: 10.1136/bmjophth-2021-000855
- Vught, Beenakker and Luyten. Reply to comment on: Distinct differences in anterior chamber configuration and peripheral aberrations in negative dysphotop. Journal of Cataract and Refractive Surgery (2021), doi: 10.1097/j.jcrs.0000000000000431
- Vught, Luyten and Beenakker. Distinct differences in anterior chamber configuration and peripheral aberrations in negative dysphotopsia. Journal of Cataract and Refractive Surgery (2020), doi: 10.1097/j.jcrs.0000000000000206
- Rijn, Wijnen, Dooren, Cheng, Beenakker and Luyten. Improved Interchangeability with Different Corneal Specular Microscopes for Quantitative Endothelial Cell Analysis. Clinical Ophthalmology (Auckland, N.Z.) (2020), doi: 10.2147/opth.s228347
- Rijn, Gaurisankar, Ilgenfritz, Lima, Haasnoot, Beenakker, Cheng and Luyten. Middle- and long-term results after iris-fixated phakic intraocular lens implantation in myopic and hyperopic patients: a meta-analysis. Journal of Cataract and Refractive Surgery (2020), doi: 10.1097/j.jcrs.0000000000000002
- Gaurisankar, Rijn, Lima, Ilgenfritz, Cheng, Haasnoot, Luyten and Beenakker. Correlations between ocular biometrics and refractive error: A systematic review and meta‐analysis. Acta Ophthalmologica (2019), doi: 10.1111/aos.14208
- Beenakker, Shamonin, Webb, Luyten and Stoel. Automated Retinal Topographic Maps Measured With Magnetic Resonance Imaging. Investigative Ophthalmology & Visual Science (2015), doi: 10.1167/iovs.14-15161
Ocular Radiotherapy
- Pors, Haasjes, Vught, Hoes, Luyten, Rijn, Vu, Rasch, Horeweg and Beenakker. Correction Method for Optical Scaling of Fundoscopy Images: Development, Validation, and First Implementation.. Investigative ophthalmology & visual science (2024), doi: 10.1167/iovs.65.1.43
- Klaassen, Haasjes, Hol, Lopes, Spruijt, Steeg-Henzen, Vu, Bakker, Rasch, Verbist and Beenakker. Geometrical accuracy of magnetic resonance imaging for ocular proton therapy planning. Physics and Imaging in Radiation Oncology (2024), doi: 10.1016/j.phro.2024.100598
- Hrbacek, Kacperek, Beenakker, Mortimer, Denker, Mazal, Shih, Dendale, Slopsema, Heufelder and Mishra. PTCOG Ocular Statement: Expert Summary of Current Practices and Future Developments in Ocular Proton Therapy. International Journal of Radiation Oncology*Biology*Physics (2024), doi: 10.1016/j.ijrobp.2024.06.017
- Klaassen, Jaarsma-Coes, Marinkovic, Luyten, Rasch, Ferreira and Beenakker. Quantitative Perfusion-Weighted Magnetic Resonance Imaging in Uveal Melanoma.. Investigative ophthalmology & visual science (2024), doi: 10.1167/iovs.65.11.17
- Jaarsma-Coes, Ferreira, Marinkovic, Vu, Vught, Haren, Rodrigues, Klaver, Verbist, Luyten, Rasch and Beenakker. Comparison of Magnetic Resonance Imaging–Based and Conventional Measurements for Proton Beam Therapy of Uveal Melanoma. Ophthalmology Retina (2023), doi: 10.1016/j.oret.2022.06.019
- Jaarsma-Coes, Klaassen, Verbist, Vu, Klaver, Rodrigues, Nabarro, Luyten, Rasch, Herk and Beenakker. Inter-Observer Variability in MR-Based Target Volume Delineation of Uveal Melanoma. Advances in Radiation Oncology (2023), doi: 10.1016/j.adro.2022.101149
- Klaassen, Jaarsma-Coes, Verbist, Vu, Marinkovic, Rasch, Luyten and Beenakker. Automatic Three-Dimensional Magnetic Resonance-based measurements of tumour prominence and basal diameter for treatment planning of uveal melanoma. Physics and Imaging in Radiation Oncology (2022), doi: 10.1016/j.phro.2022.11.001
- Beenakker and Rasch. Letter to the Editor of Radiotherapy and Oncology regarding the paper titled “MRI and FUNDUS image fusion for improved ocular biometry in Ocular Proton Therapy” by Via et al.. Radiotherapy and Oncology (2022), doi: 10.1016/j.radonc.2022.08.018
- Hassan, Fleury, Shamonin, Fonk, Marinkovic, Jaarsma-Coes, Luyten, Webb, Beenakker and Stoel. An Automatic Framework to Create Patient-specific Eye Models From 3D Magnetic Resonance Images for Treatment Selection in Patients With Uveal Melanoma. Advances in Radiation Oncology (2021), doi: 10.1016/j.adro.2021.100697
- Fleury, Trnková, Erdal, Hassan, Stoel, Jaarma‐Coes, Luyten, Herault, Webb, Beenakker, Pignol and Hoogeman. Three‐dimensional MRI‐based treatment planning approach for non‐invasive ocular proton therapy. Medical Physics (2021), doi: 10.1002/mp.14665
- Jaarsma-Coes, Marinkovic, Astreinidou, Schuurmans, Peters, Luyten, Rasch and Beenakker. Measuring eye deformation between planning and proton beam therapy position using magnetic resonance imaging. Physics and Imaging in Radiation Oncology (2020), doi: 10.1016/j.phro.2020.09.010
- Fonk, Ferreira, Webb, Luyten and Beenakker. The Economic Value of MR-Imaging for Uveal Melanoma. Clinical Ophthalmology (Auckland, N.Z.) (2020), doi: 10.2147/opth.s238405
Quantitative MRI
- Klaassen, Jaarsma-Coes, Marinkovic, Luyten, Rasch, Ferreira and Beenakker. Quantitative Perfusion-Weighted Magnetic Resonance Imaging in Uveal Melanoma.. Investigative ophthalmology & visual science (2024), doi: 10.1167/iovs.65.11.17
- Keene, Notting, Verschuuren, Voermans, Keizer, Beenakker, Tannemaat and Kan. Eye Muscle MRI in Myasthenia Gravis and Other Neuromuscular Disorders. Journal of Neuromuscular Diseases (2023), doi: 10.3233/jnd-230023
- Jaarsma-Coes, Ferreira, Houdt, Heide, Luyten and Beenakker. Eye-specific quantitative dynamic contrast-enhanced MRI analysis for patients with intraocular masses. Magnetic Resonance Materials in Physics, Biology and Medicine (2022), doi: 10.1007/s10334-021-00961-w
- Velde, Hooijmans, Mishre, Keene, Koeks, Veeger, Alleman, Zwet, Beenakker, Verschuuren, Kan and Niks. Selection Approach to Identify the Optimal Biomarker Using Quantitative Muscle MRI and Functional Assessments in Becker Muscular Dystrophy. Neurology (2021), doi: 10.1212/wnl.0000000000012233
- Keene, Vught, Velde, Ciggaar, Notting, Genders, Verschuuren, Tannemaat, Kan and Beenakker. The feasibility of quantitative MRI of extra‐ocular muscles in myasthenia gravis and Graves' orbitopathy. NMR in Biomedicine (2021), doi: 10.1002/nbm.4407
- Keene, Beenakker, Hooijmans, Naarding, Niks, Otto, Pol, Tannemaat, Kan and Froeling. T2 relaxation‐time mapping in healthy and diseased skeletal muscle using extended phase graph algorithms. Magnetic Resonance in Medicine (2020), doi: 10.1002/mrm.28290